// RichTextKit // Copyright © 2019-2020 Topten Software. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may // not use this product except in compliance with the License. You may obtain // a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. using System; using System.IO; using System.IO.Compression; using System.Text; // Ported from: https://github.com/foliojs/unicode-trie namespace Topten.RichTextKit { internal class UnicodeTrieBuilder { // Shift size for getting the index-1 table offset. internal const int SHIFT_1 = 6 + 5; // Shift size for getting the index-2 table offset. internal const int SHIFT_2 = 5; // Difference between the two shift sizes, // for getting an index-1 offset from an index-2 offset. 6=11-5 const int SHIFT_1_2 = SHIFT_1 - SHIFT_2; // Number of index-1 entries for the BMP. 32=0x20 // This part of the index-1 table is omitted from the serialized form. internal const int OMITTED_BMP_INDEX_1_LENGTH = 0x10000 >> SHIFT_1; // Number of code points per index-1 table entry. 2048=0x800 const int CP_PER_INDEX_1_ENTRY = 1 << SHIFT_1; // Number of entries in an index-2 block. 64=0x40 const int INDEX_2_BLOCK_LENGTH = 1 << SHIFT_1_2; // Mask for getting the lower bits for the in-index-2-block offset. */ internal const int INDEX_2_MASK = INDEX_2_BLOCK_LENGTH - 1; // Number of entries in a data block. 32=0x20 const int DATA_BLOCK_LENGTH = 1 << SHIFT_2; // Mask for getting the lower bits for the in-data-block offset. internal const int DATA_MASK = DATA_BLOCK_LENGTH - 1; // Shift size for shifting left the index array values. // Increases possible data size with 16-bit index values at the cost // of compactability. // This requires data blocks to be aligned by DATA_GRANULARITY. internal const int INDEX_SHIFT = 2; // The alignment size of a data block. Also the granularity for compaction. internal const int DATA_GRANULARITY = 1 << INDEX_SHIFT; // The BMP part of the index-2 table is fixed and linear and starts at offset 0. // Length=2048=0x800=0x10000>>SHIFT_2. const int INDEX_2_OFFSET = 0; // The part of the index-2 table for U+D800..U+DBFF stores values for // lead surrogate code _units_ not code _points_. // Values for lead surrogate code _points_ are indexed with this portion of the table. // Length=32=0x20=0x400>>SHIFT_2. (There are 1024=0x400 lead surrogates.) internal const int LSCP_INDEX_2_OFFSET = 0x10000 >> SHIFT_2; const int LSCP_INDEX_2_LENGTH = 0x400 >> SHIFT_2; // Count the lengths of both BMP pieces. 2080=0x820 const int INDEX_2_BMP_LENGTH = LSCP_INDEX_2_OFFSET + LSCP_INDEX_2_LENGTH; // The 2-byte UTF-8 version of the index-2 table follows at offset 2080=0x820. // Length 32=0x20 for lead bytes C0..DF, regardless of SHIFT_2. const int UTF8_2B_INDEX_2_OFFSET = INDEX_2_BMP_LENGTH; const int UTF8_2B_INDEX_2_LENGTH = 0x800 >> 6; // U+0800 is the first code point after 2-byte UTF-8 // The index-1 table, only used for supplementary code points, at offset 2112=0x840. // Variable length, for code points up to highStart, where the last single-value range starts. // Maximum length 512=0x200=0x100000>>SHIFT_1. // (For 0x100000 supplementary code points U+10000..U+10ffff.) // // The part of the index-2 table for supplementary code points starts // after this index-1 table. // // Both the index-1 table and the following part of the index-2 table // are omitted completely if there is only BMP data. internal const int INDEX_1_OFFSET = UTF8_2B_INDEX_2_OFFSET + UTF8_2B_INDEX_2_LENGTH; const int MAX_INDEX_1_LENGTH = 0x100000 >> SHIFT_1; // The illegal-UTF-8 data block follows the ASCII block, at offset 128=0x80. // Used with linear access for single bytes 0..0xbf for simple error handling. // Length 64=0x40, not DATA_BLOCK_LENGTH. const int BAD_UTF8_DATA_OFFSET = 0x80; // The start of non-linear-ASCII data blocks, at offset 192=0xc0. // !!!! const int DATA_START_OFFSET = 0xc0; // The null data block. // Length 64=0x40 even if DATA_BLOCK_LENGTH is smaller, // to work with 6-bit trail bytes from 2-byte UTF-8. const int DATA_NULL_OFFSET = DATA_START_OFFSET; // The start of allocated data blocks. const int NEW_DATA_START_OFFSET = DATA_NULL_OFFSET + 0x40; // The start of data blocks for U+0800 and above. // Below, compaction uses a block length of 64 for 2-byte UTF-8. // From here on, compaction uses DATA_BLOCK_LENGTH. // Data values for 0x780 code points beyond ASCII. const int DATA_0800_OFFSET = NEW_DATA_START_OFFSET + 0x780; // Start with allocation of 16k data entries. */ const int INITIAL_DATA_LENGTH = 1 << 14; // Grow about 8x each time. const int MEDIUM_DATA_LENGTH = 1 << 17; // Maximum length of the runtime data array. // Limited by 16-bit index values that are left-shifted by INDEX_SHIFT, // and by uint16_t UTrie2Header.shiftedDataLength. const int MAX_DATA_LENGTH_RUNTIME = 0xffff << INDEX_SHIFT; const int INDEX_1_LENGTH = 0x110000 >> SHIFT_1; // Maximum length of the build-time data array. // One entry per 0x110000 code points, plus the illegal-UTF-8 block and the null block, // plus values for the 0x400 surrogate code units. const int MAX_DATA_LENGTH_BUILDTIME = 0x110000 + 0x40 + 0x40 + 0x400; // At build time, leave a gap in the index-2 table, // at least as long as the maximum lengths of the 2-byte UTF-8 index-2 table // and the supplementary index-1 table. // Round up to INDEX_2_BLOCK_LENGTH for proper compacting. const int INDEX_GAP_OFFSET = INDEX_2_BMP_LENGTH; const int INDEX_GAP_LENGTH = ((UTF8_2B_INDEX_2_LENGTH + MAX_INDEX_1_LENGTH) + INDEX_2_MASK) & ~INDEX_2_MASK; // Maximum length of the build-time index-2 array. // Maximum number of Unicode code points (0x110000) shifted right by SHIFT_2, // plus the part of the index-2 table for lead surrogate code points, // plus the build-time index gap, // plus the null index-2 block.) const int MAX_INDEX_2_LENGTH = (0x110000 >> SHIFT_2) + LSCP_INDEX_2_LENGTH + INDEX_GAP_LENGTH + INDEX_2_BLOCK_LENGTH; // The null index-2 block, following the gap in the index-2 table. const int INDEX_2_NULL_OFFSET = INDEX_GAP_OFFSET + INDEX_GAP_LENGTH; // The start of allocated index-2 blocks. const int INDEX_2_START_OFFSET = INDEX_2_NULL_OFFSET + INDEX_2_BLOCK_LENGTH; // Maximum length of the runtime index array. // Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. // (The actual maximum length is lower, // (0x110000>>SHIFT_2)+UTF8_2B_INDEX_2_LENGTH+MAX_INDEX_1_LENGTH.) const int MAX_INDEX_LENGTH = 0xffff; static bool equal(uint[] a, int s, int t, int length) { for (var i = 0; i < length; i++) { if (a[s + i] != a[t + i]) { return false; } } return true; } static bool equal(int[] a, int s, int t, int length) { for (var i = 0; i < length; i++) { if (a[s + i] != a[t + i]) { return false; } } return true; } uint _initialValue; uint _errorValue; int[] _index1; int[] _index2; int _highStart; UInt32[] _data; int _dataCapacity; int _firstFreeBlock; bool _isCompacted; int[] _map; int _dataNullOffset; int _dataLength; int _index2NullOffset; int _index2Length; public UnicodeTrieBuilder(uint initialValue = 0, uint errorValue = 0) { _initialValue = initialValue; _errorValue = errorValue; _index1 = new int[INDEX_1_LENGTH]; _index2 = new int[MAX_INDEX_2_LENGTH]; _highStart = 0x110000; _data = new uint[INITIAL_DATA_LENGTH]; _dataCapacity = INITIAL_DATA_LENGTH; _firstFreeBlock = 0; _isCompacted = false; // Multi-purpose per-data-block table. // // Before compacting: // // Per-data-block reference counters/free-block list. // 0: unused // >0: reference counter (number of index-2 entries pointing here) // <0: next free data block in free-block list // // While compacting: // // Map of adjusted indexes, used in compactData() and compactIndex2(). // Maps from original indexes to new ones. _map = new int[MAX_DATA_LENGTH_BUILDTIME >> SHIFT_2]; int i; for (i = 0; i < 0x80; i++) { _data[i] = _initialValue; } for (; i < 0xc0; i++) { _data[i] = _errorValue; } for (i = DATA_NULL_OFFSET; i < NEW_DATA_START_OFFSET; i++) { _data[i] = _initialValue; } _dataNullOffset = DATA_NULL_OFFSET; _dataLength = NEW_DATA_START_OFFSET; // set the index-2 indexes for the 2=0x80>>SHIFT_2 ASCII data blocks int j; i = 0; for (j = 0; j < 0x80; j += DATA_BLOCK_LENGTH) { _index2[i] = j; _map[i++] = 1; } // reference counts for the bad-UTF-8-data block for (; j < 0xc0; j += DATA_BLOCK_LENGTH) { _map[i++] = 0; } // Reference counts for the null data block: all blocks except for the ASCII blocks. // Plus 1 so that we don't drop this block during compaction. // Plus as many as needed for lead surrogate code points. // i==newTrie->dataNullOffset _map[i++] = ((0x110000 >> SHIFT_2) - (0x80 >> SHIFT_2)) + 1 + LSCP_INDEX_2_LENGTH; j += DATA_BLOCK_LENGTH; for (; j < NEW_DATA_START_OFFSET; j += DATA_BLOCK_LENGTH) { _map[i++] = 0; } // set the remaining indexes in the BMP index-2 block // to the null data block for (i = 0x80 >> SHIFT_2; i < INDEX_2_BMP_LENGTH; i++) { _index2[i] = DATA_NULL_OFFSET; } // Fill the index gap with impossible values so that compaction // does not overlap other index-2 blocks with the gap. for (i = 0; i < INDEX_GAP_LENGTH; i++) { _index2[INDEX_GAP_OFFSET + i] = -1; } // set the indexes in the null index-2 block for (i = 0; i < INDEX_2_BLOCK_LENGTH; i++) { _index2[INDEX_2_NULL_OFFSET + i] = DATA_NULL_OFFSET; } _index2NullOffset = INDEX_2_NULL_OFFSET; _index2Length = INDEX_2_START_OFFSET; // set the index-1 indexes for the linear index-2 block j = 0; for (i = 0; i < OMITTED_BMP_INDEX_1_LENGTH; i++) { _index1[i] = j; j += INDEX_2_BLOCK_LENGTH; } // set the remaining index-1 indexes to the null index-2 block for (; i < INDEX_1_LENGTH; i++) { _index1[i] = INDEX_2_NULL_OFFSET; } // Preallocate and reset data for U+0080..U+07ff, // for 2-byte UTF-8 which will be compacted in 64-blocks // even if DATA_BLOCK_LENGTH is smaller. for (i = 0x80; i < 0x800; i += DATA_BLOCK_LENGTH) { Set(i, _initialValue); } } public UnicodeTrieBuilder Set(int codePoint, uint value) { if ((codePoint < 0) || (codePoint > 0x10ffff)) { throw new InvalidOperationException("Invalid code point"); } if (_isCompacted) { throw new InvalidOperationException("Already compacted"); } var block = getDataBlock(codePoint, true); _data[block + (codePoint & DATA_MASK)] = value; return this; } public UnicodeTrieBuilder SetRange(int start, int end, uint value, bool overwrite = true) { if ((start > 0x10ffff) || (end > 0x10ffff) || (start > end)) { throw new InvalidOperationException("Invalid code point"); } if (_isCompacted) { throw new InvalidOperationException("Already compacted"); } if (!overwrite && (value == _initialValue)) { return this; // nothing to do } var limit = end + 1; if ((start & DATA_MASK) != 0) { // set partial block at [start..following block boundary var block = getDataBlock(start, true); var nextStart = (start + DATA_BLOCK_LENGTH) & ~DATA_MASK; if (nextStart <= limit) { fillBlock(block, start & DATA_MASK, DATA_BLOCK_LENGTH, value, _initialValue, overwrite); start = nextStart; } else { fillBlock(block, start & DATA_MASK, limit & DATA_MASK, value, _initialValue, overwrite); return this; } } // number of positions in the last, partial block var rest = limit & DATA_MASK; // round down limit to a block boundary limit &= ~DATA_MASK; // iterate over all-value blocks int repeatBlock; if (value == _initialValue) { repeatBlock = _dataNullOffset; } else { repeatBlock = -1; } while (start < limit) { var setRepeatBlock = false; if ((value == _initialValue) && isInNullBlock(start, true)) { start += DATA_BLOCK_LENGTH; // nothing to do continue; } // get index value var i2 = getIndex2Block(start, true); i2 += (start >> SHIFT_2) & INDEX_2_MASK; var block = _index2[i2]; if (isWritableBlock(block)) { // already allocated if (overwrite && (block >= DATA_0800_OFFSET)) { // We overwrite all values, and it's not a // protected (ASCII-linear or 2-byte UTF-8) block: // replace with the repeatBlock. setRepeatBlock = true; } else { // protected block: just write the values into this block fillBlock(block, 0, DATA_BLOCK_LENGTH, value, _initialValue, overwrite); } } else if ((_data[block] != value) && (overwrite || (block == _dataNullOffset))) { // Set the repeatBlock instead of the null block or previous repeat block: // // If !isWritableBlock() then all entries in the block have the same value // because it's the null block or a range block (the repeatBlock from a previous // call to utrie2_setRange32()). // No other blocks are used multiple times before compacting. // // The null block is the only non-writable block with the initialValue because // of the repeatBlock initialization above. (If value==initialValue, then // the repeatBlock will be the null data block.) // // We set our repeatBlock if the desired value differs from the block's value, // and if we overwrite any data or if the data is all initial values // (which is the same as the block being the null block, see above). setRepeatBlock = true; } if (setRepeatBlock) { if (repeatBlock >= 0) { setIndex2Entry(i2, repeatBlock); } else { // create and set and fill the repeatBlock repeatBlock = getDataBlock(start, true); writeBlock(repeatBlock, value); } } start += DATA_BLOCK_LENGTH; } if (rest > 0) { // set partial block at [last block boundary..limit var block = getDataBlock(start, true); fillBlock(block, 0, rest, value, _initialValue, overwrite); } return this; } public uint Get(int c, bool fromLSCP = true) { if ((c < 0) || (c > 0x10ffff)) { return _errorValue; } if ((c >= _highStart) && (!((c >= 0xd800) && (c < 0xdc00)) || fromLSCP)) { return _data[_dataLength - DATA_GRANULARITY]; } int i2; if (((c >= 0xd800) && (c < 0xdc00)) && fromLSCP) { i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); } else { i2 = _index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); } var block = _index2[i2]; return _data[block + (c & DATA_MASK)]; } public byte[] ToBuffer() { var mem = new MemoryStream(); Save(mem); return mem.GetBuffer(); } public void Save(Stream stream) { var trie = this.Freeze(); trie.Save(stream); } bool isInNullBlock(int c, bool forLSCP) { int i2; if (((c & 0xfffffc00) == 0xd800) && forLSCP) { i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); } else { i2 = _index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); } var block = _index2[i2]; return block == _dataNullOffset; } int allocIndex2Block() { var newBlock = _index2Length; var newTop = newBlock + INDEX_2_BLOCK_LENGTH; if (newTop > _index2.Length) { // Should never occur. // Either MAX_BUILD_TIME_INDEX_LENGTH is incorrect, // or the code writes more values than should be possible. throw new InvalidOperationException("Internal error in Trie2 creation."); } _index2Length = newTop; Array.Copy(_index2, _index2NullOffset, _index2, newBlock, INDEX_2_BLOCK_LENGTH); // _index2.set(_index2.subarray(_index2NullOffset, _index2NullOffset + INDEX_2_BLOCK_LENGTH), newBlock); return newBlock; } int getIndex2Block(int c, bool forLSCP) { if ((c >= 0xd800) && (c < 0xdc00) && forLSCP) { return LSCP_INDEX_2_OFFSET; } var i1 = c >> SHIFT_1; var i2 = _index1[i1]; if (i2 == _index2NullOffset) { i2 = allocIndex2Block(); _index1[i1] = i2; } return i2; } bool isWritableBlock(int block) { return (block != _dataNullOffset) && (_map[block >> SHIFT_2] == 1); } int allocDataBlock(int copyBlock) { int newBlock; if (_firstFreeBlock != 0) { // get the first free block newBlock = _firstFreeBlock; _firstFreeBlock = -_map[newBlock >> SHIFT_2]; } else { // get a new block from the high end newBlock = _dataLength; var newTop = newBlock + DATA_BLOCK_LENGTH; if (newTop > _dataCapacity) { // out of memory in the data array int capacity; if (_dataCapacity < MEDIUM_DATA_LENGTH) { capacity = MEDIUM_DATA_LENGTH; } else if (_dataCapacity < MAX_DATA_LENGTH_BUILDTIME) { capacity = MAX_DATA_LENGTH_BUILDTIME; } else { // Should never occur. // Either MAX_DATA_LENGTH_BUILDTIME is incorrect, // or the code writes more values than should be possible. throw new InvalidOperationException("Internal error in Trie2 creation."); } var newData = new UInt32[capacity]; Array.Copy(_data, newData, _dataLength); _data = newData; _dataCapacity = capacity; } _dataLength = newTop; } Array.Copy(_data, copyBlock, _data, newBlock, DATA_BLOCK_LENGTH); //_data.set(_data.subarray(copyBlock, copyBlock + DATA_BLOCK_LENGTH), newBlock); _map[newBlock >> SHIFT_2] = 0; return newBlock; } void releaseDataBlock(int block) { // put this block at the front of the free-block chain _map[block >> SHIFT_2] = -_firstFreeBlock; _firstFreeBlock = block; } void setIndex2Entry(int i2, int block) { ++_map[block >> SHIFT_2]; // increment first, in case block == oldBlock! var oldBlock = _index2[i2]; if (--_map[oldBlock >> SHIFT_2] == 0) { releaseDataBlock(oldBlock); } _index2[i2] = block; } int getDataBlock(int c, bool forLSCP) { var i2 = getIndex2Block(c, forLSCP); i2 += (c >> SHIFT_2) & INDEX_2_MASK; var oldBlock = _index2[i2]; if (isWritableBlock(oldBlock)) { return oldBlock; } // allocate a new data block var newBlock = allocDataBlock(oldBlock); setIndex2Entry(i2, newBlock); return newBlock; } void fillBlock(int block, int start, int limit, uint value, uint initialValue, bool overwrite) { int i; if (overwrite) { for (i = block + start; i < block + limit; i++) { _data[i] = value; } } else { for (i = block + start; i < block + limit; i++) { if (_data[i] == initialValue) { _data[i] = value; } } } } void writeBlock(int block, uint value) { var limit = block + DATA_BLOCK_LENGTH; while (block < limit) { _data[block++] = value; } } int findHighStart(uint highValue) { int prevBlock, prevI2Block; // set variables for previous range if (highValue == _initialValue) { prevI2Block = _index2NullOffset; prevBlock = _dataNullOffset; } else { prevI2Block = -1; prevBlock = -1; } int prev = 0x110000; // enumerate index-2 blocks var i1 = INDEX_1_LENGTH; var c = prev; while (c > 0) { var i2Block = _index1[--i1]; if (i2Block == prevI2Block) { // the index-2 block is the same as the previous one, and filled with highValue c -= CP_PER_INDEX_1_ENTRY; continue; } prevI2Block = i2Block; if (i2Block == _index2NullOffset) { // this is the null index-2 block if (highValue != _initialValue) { return c; } c -= CP_PER_INDEX_1_ENTRY; } else { // enumerate data blocks for one index-2 block var i2 = INDEX_2_BLOCK_LENGTH; while (i2 > 0) { var block = _index2[i2Block + --i2]; if (block == prevBlock) { // the block is the same as the previous one, and filled with highValue c -= DATA_BLOCK_LENGTH; continue; } prevBlock = block; if (block == _dataNullOffset) { // this is the null data block if (highValue != _initialValue) { return c; } c -= DATA_BLOCK_LENGTH; } else { var j = DATA_BLOCK_LENGTH; while (j > 0) { var value = _data[block + --j]; if (value != highValue) { return c; } --c; } } } } } // deliver last range return 0; } int findSameDataBlock(int dataLength, int otherBlock, int blockLength) { // ensure that we do not even partially get past dataLength dataLength -= blockLength; var block = 0; while (block <= dataLength) { if (equal(_data, block, otherBlock, blockLength)) { return block; } block += DATA_GRANULARITY; } return -1; } int findSameIndex2Block(int index2Length, int otherBlock) { // ensure that we do not even partially get past index2Length index2Length -= INDEX_2_BLOCK_LENGTH; for (var block = 0; block <= index2Length; block++) { if (equal(_index2, block, otherBlock, INDEX_2_BLOCK_LENGTH)) { return block; } } return -1; } void compactData() { // do not compact linear-ASCII data var newStart = DATA_START_OFFSET; var start = 0; var i = 0; while (start < newStart) { _map[i++] = start; start += DATA_BLOCK_LENGTH; } // Start with a block length of 64 for 2-byte UTF-8, // then switch to DATA_BLOCK_LENGTH. var blockLength = 64; var blockCount = blockLength >> SHIFT_2; start = newStart; while (start < _dataLength) { // start: index of first entry of current block // newStart: index where the current block is to be moved // (right after current end of already-compacted data) int mapIndex, movedStart; if (start == DATA_0800_OFFSET) { blockLength = DATA_BLOCK_LENGTH; blockCount = 1; } // skip blocks that are not used if (_map[start >> SHIFT_2] <= 0) { // advance start to the next block start += blockLength; // leave newStart with the previous block! continue; } // search for an identical block if ((movedStart = findSameDataBlock(newStart, start, blockLength)) >= 0) { // found an identical block, set the other block's index value for the current block mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { _map[mapIndex++] = movedStart; movedStart += DATA_BLOCK_LENGTH; } // advance start to the next block start += blockLength; // leave newStart with the previous block! continue; } // see if the beginning of this block can be overlapped with the end of the previous block // look for maximum overlap (modulo granularity) with the previous, adjacent block var overlap = blockLength - DATA_GRANULARITY; while ((overlap > 0) && !equal(_data, (newStart - overlap), start, overlap)) { overlap -= DATA_GRANULARITY; } if ((overlap > 0) || (newStart < start)) { // some overlap, or just move the whole block movedStart = newStart - overlap; mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { _map[mapIndex++] = movedStart; movedStart += DATA_BLOCK_LENGTH; } // move the non-overlapping indexes to their new positions start += overlap; for (i = blockLength - overlap; i > 0; i--) { _data[newStart++] = _data[start++]; } } else { // no overlap && newStart==start mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { _map[mapIndex++] = start; start += DATA_BLOCK_LENGTH; } newStart = start; } } // now adjust the index-2 table i = 0; while (i < _index2Length) { // Gap indexes are invalid (-1). Skip over the gap. if (i == INDEX_GAP_OFFSET) { i += INDEX_GAP_LENGTH; } _index2[i] = _map[_index2[i] >> SHIFT_2]; ++i; } _dataNullOffset = _map[_dataNullOffset >> SHIFT_2]; // ensure dataLength alignment while ((newStart & (DATA_GRANULARITY - 1)) != 0) { _data[newStart++] = _initialValue; } _dataLength = newStart; } void compactIndex2() { // do not compact linear-BMP index-2 blocks var newStart = INDEX_2_BMP_LENGTH; var start = 0; var i = 0; while (start < newStart) { _map[i++] = start; start += INDEX_2_BLOCK_LENGTH; } // Reduce the index table gap to what will be needed at runtime. newStart += UTF8_2B_INDEX_2_LENGTH + ((_highStart - 0x10000) >> SHIFT_1); start = INDEX_2_NULL_OFFSET; while (start < _index2Length) { // start: index of first entry of current block // newStart: index where the current block is to be moved // (right after current end of already-compacted data) // search for an identical block int movedStart; if ((movedStart = findSameIndex2Block(newStart, start)) >= 0) { // found an identical block, set the other block's index value for the current block _map[start >> SHIFT_1_2] = movedStart; // advance start to the next block start += INDEX_2_BLOCK_LENGTH; // leave newStart with the previous block! continue; } // see if the beginning of this block can be overlapped with the end of the previous block // look for maximum overlap with the previous, adjacent block var overlap = INDEX_2_BLOCK_LENGTH - 1; while ((overlap > 0) && !equal(_index2, (newStart - overlap), start, overlap)) { --overlap; } if ((overlap > 0) || (newStart < start)) { // some overlap, or just move the whole block _map[start >> SHIFT_1_2] = newStart - overlap; // move the non-overlapping indexes to their new positions start += overlap; for (i = INDEX_2_BLOCK_LENGTH - overlap; i > 0; i--) { _index2[newStart++] = _index2[start++]; } } else { // no overlap && newStart==start _map[start >> SHIFT_1_2] = start; start += INDEX_2_BLOCK_LENGTH; newStart = start; } } // now adjust the index-1 table for (i = 0; i < INDEX_1_LENGTH; i++) { _index1[i] = _map[_index1[i] >> SHIFT_1_2]; } _index2NullOffset = _map[_index2NullOffset >> SHIFT_1_2]; // Ensure data table alignment: // Needs to be granularity-aligned for 16-bit trie // (so that dataMove will be down-shiftable), // and 2-aligned for uint32_t data. // Arbitrary value: 0x3fffc not possible for real data. while ((newStart & ((DATA_GRANULARITY - 1) | 1)) != 0) { _index2[newStart++] = 0x0000ffff << INDEX_SHIFT; } _index2Length = newStart; } void compact() { // find highStart and round it up var highValue = Get(0x10ffff); var highStart = findHighStart(highValue); highStart = (highStart + (CP_PER_INDEX_1_ENTRY - 1)) & ~(CP_PER_INDEX_1_ENTRY - 1); if (highStart == 0x110000) { highValue = _errorValue; } // Set trie->highStart only after utrie2_get32(trie, highStart). // Otherwise utrie2_get32(trie, highStart) would try to read the highValue. _highStart = highStart; if (_highStart < 0x110000) { // Blank out [highStart..10ffff] to release associated data blocks. var suppHighStart = _highStart <= 0x10000 ? 0x10000 : _highStart; SetRange(suppHighStart, 0x10ffff, _initialValue, true); } compactData(); if (_highStart > 0x10000) { compactIndex2(); } // Store the highValue in the data array and round up the dataLength. // Must be done after compactData() because that assumes that dataLength // is a multiple of DATA_BLOCK_LENGTH. _data[_dataLength++] = highValue; while ((_dataLength & (DATA_GRANULARITY - 1)) != 0) { _data[_dataLength++] = _initialValue; } _isCompacted = true; } public UnicodeTrie Freeze() { int allIndexesLength, i; if (!_isCompacted) { compact(); } if (_highStart <= 0x10000) { allIndexesLength = INDEX_1_OFFSET; } else { allIndexesLength = _index2Length; } var dataMove = allIndexesLength; // are indexLength and dataLength within limits? if ((allIndexesLength > MAX_INDEX_LENGTH) || // for unshifted indexLength ((dataMove + _dataNullOffset) > 0xffff) || // for unshifted dataNullOffset ((dataMove + DATA_0800_OFFSET) > 0xffff) || // for unshifted 2-byte UTF-8 index-2 values ((dataMove + _dataLength) > MAX_DATA_LENGTH_RUNTIME)) { // for shiftedDataLength throw new InvalidOperationException("Trie data is too large."); } // calculate the sizes of, and allocate, the index and data arrays var indexLength = allIndexesLength + _dataLength; var data = new int[indexLength]; // write the index-2 array values shifted right by INDEX_SHIFT, after adding dataMove var destIdx = 0; for (i = 0; i < INDEX_2_BMP_LENGTH; i++) { data[destIdx++] = ((_index2[i] + dataMove) >> INDEX_SHIFT); } // write UTF-8 2-byte index-2 values, not right-shifted for (i = 0; i < 0xc2 - 0xc0; i++) { // C0..C1 data[destIdx++] = (dataMove + BAD_UTF8_DATA_OFFSET); } for (; i < 0xe0 - 0xc0; i++) { // C2..DF data[destIdx++] = (dataMove + _index2[i << (6 - SHIFT_2)]); } if (_highStart > 0x10000) { var index1Length = (_highStart - 0x10000) >> SHIFT_1; var index2Offset = INDEX_2_BMP_LENGTH + UTF8_2B_INDEX_2_LENGTH + index1Length; // write 16-bit index-1 values for supplementary code points for (i = 0; i < index1Length; i++) { data[destIdx++] = (INDEX_2_OFFSET + _index1[i + OMITTED_BMP_INDEX_1_LENGTH]); } // write the index-2 array values for supplementary code points, // shifted right by INDEX_SHIFT, after adding dataMove for (i = 0; i < _index2Length - index2Offset; i++) { data[destIdx++] = ((dataMove + _index2[index2Offset + i]) >> INDEX_SHIFT); } } // write 16-bit data values for (i = 0; i < _dataLength; i++) { data[destIdx++] = (int)_data[i]; } return new UnicodeTrie(data, _highStart, _errorValue); } } }